

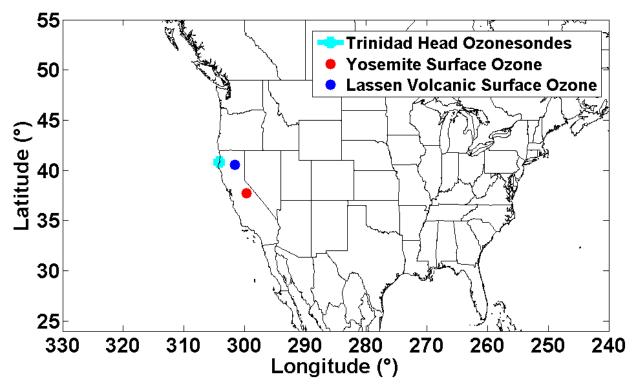
Clustering Trinidad Head, CA ozonesonde profiles with self-organizing maps: Links to surface ozone

Ryan M. Stauffer^{1,2} and Anne M. Thompson^{2,3}

¹University of Maryland, College Park, MD ²Penn State University, University Park, PA ³NASA GSFC, Greenbelt, MD

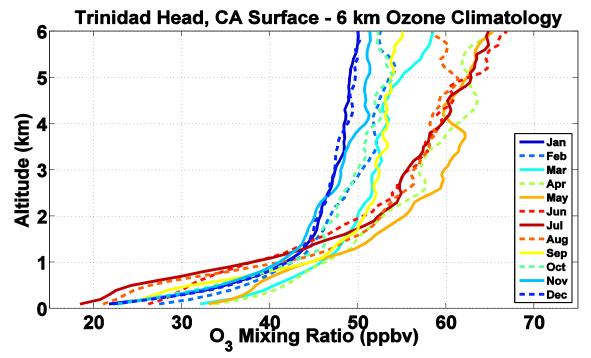
7th IWAQFR 2015, College Park, MD Thursday, 3 September 2015 10:10am

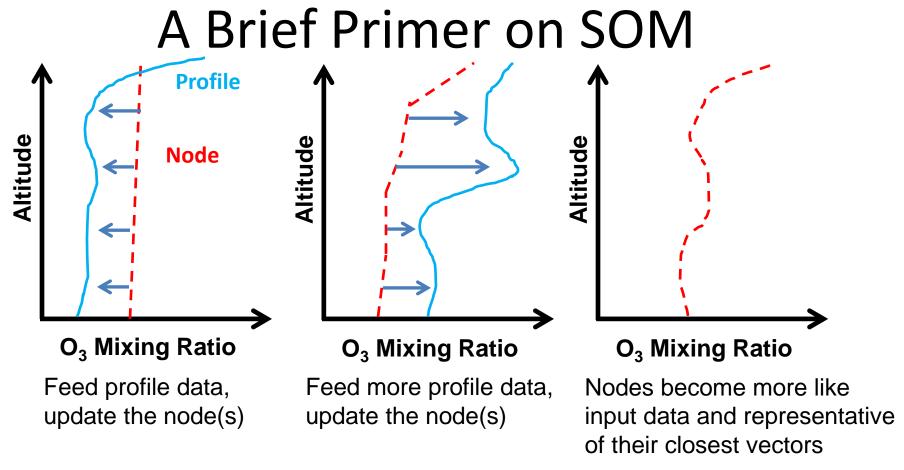
Talk Outline


- 1) Tropospheric O₃ transport to Western U.S.
- 2) Why cluster ozonesonde data with self-organizing maps (SOM)?
- 3) Trinidad Head, CA, ozonesonde profile SOM results
- SOM links to surface O₃ observations at two regional elevated sites
- 5) Summary

1) Tropospheric O₃ Transport to Western U.S.

- Main contributors of enhanced tropospheric O₃ are stratosphere-to-troposphere exchange (STE), transport of Asian emissions/imported pollution
- Enhanced free tropospheric O₃ affects surface O₃ measurements
 - STE may contribute to Western U.S. surface O_3 up to 3x more than transport from Asia (Langford et al. 2015; Lin et al. 2012a/b)
 - IONS-2010 ozonesonde network during CalNex campaign: O_3 entering W U.S. affects high-elevation surface O_3 monitors (Cooper et al., 2011)
- What are the statistics of enhanced tropospheric O_3 events over a long-term record, and the links to surface O_3 ?


Data – Trinidad Head Sondes, National Park Surface O₃

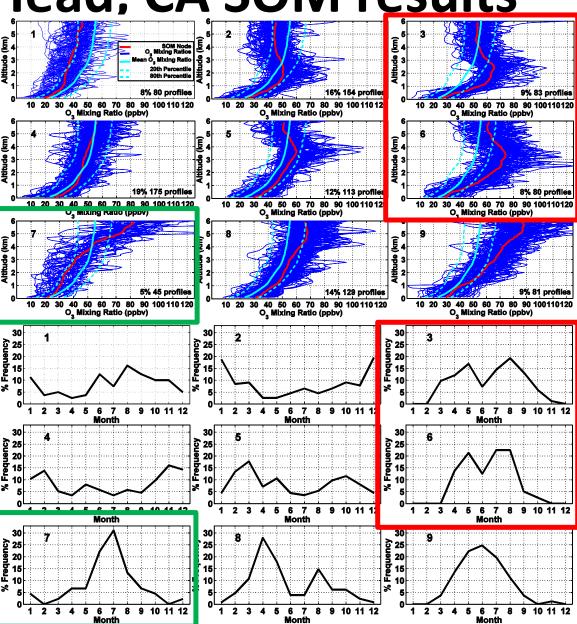

- Trinidad Head
 ozonesondes ~once
 weekly since Aug 1997
 (944 launches)
- Excellent location for monitoring tropospheric O₃ entering U.S.
- How is 18-year ozonesonde record linked to surface O₃?
 - Use two surface O₃
 monitors from National
 Parks: Lassen Volcanic
 and Yosemite (CASTNET sites)

2) Why Cluster Ozonesonde Data with Self-Organizing Maps (SOM)?

- Seasonal/monthly O₃
 climatology reveals some
 information about temporal O₃
 changes
- Late spring tropospheric O₃
 maximum STE and imported
 pollution not point of this
 talk
- Approach: 1) Use clusters of O₃ mixing ratio profiles to identify O₃ events at Trinidad Head otherwise masked by climatology
- 2) Compare Trinidad Head ozonesonde profile clusters to surface O₃ at Lassen Volcanic and Yosemite Parks

User chooses number of clusters (represented by "nodes") and various other inputs

Final Product: Each SOM node is the mean of its member data, map organized with like nodes adjacent in the map

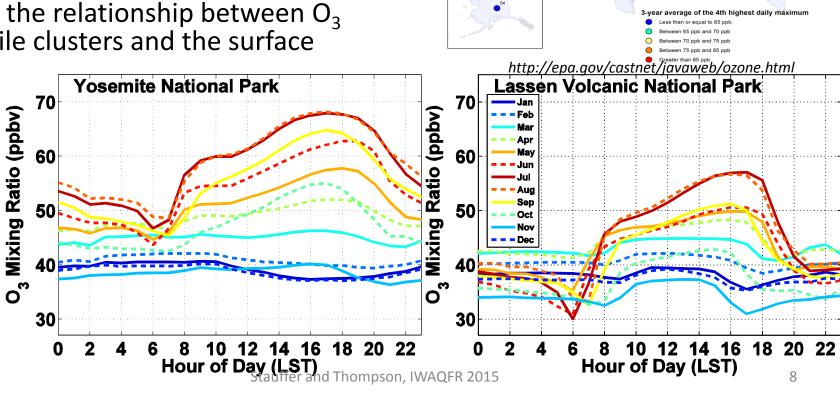

3) Trinidad Head, CA SOM results

Stauffer and Thompson, IWAQFR 2015

3x3 SOM (9 clusters) →
 of surface – 6 km O₃
 mixing ratios

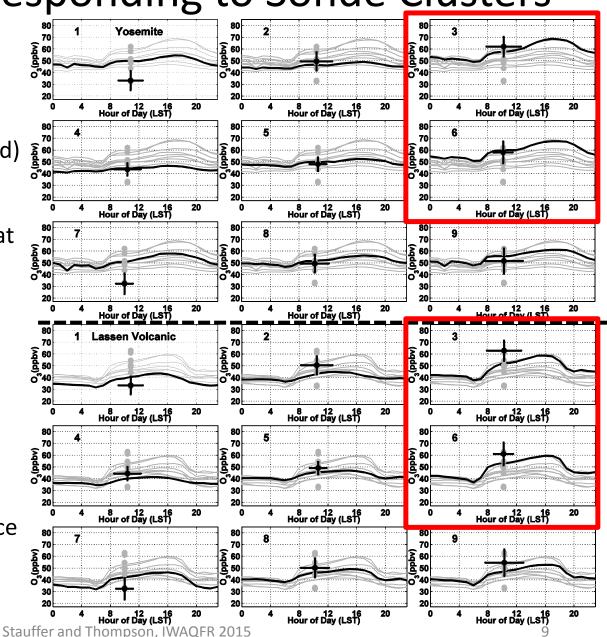
Clean (1, 4, 7, on left)
 and polluted clusters (3,
 6, 9, on right)

- Seasonality of profiles in each cluster ->
- Focus on clusters with layers of pollution (3 and 6)



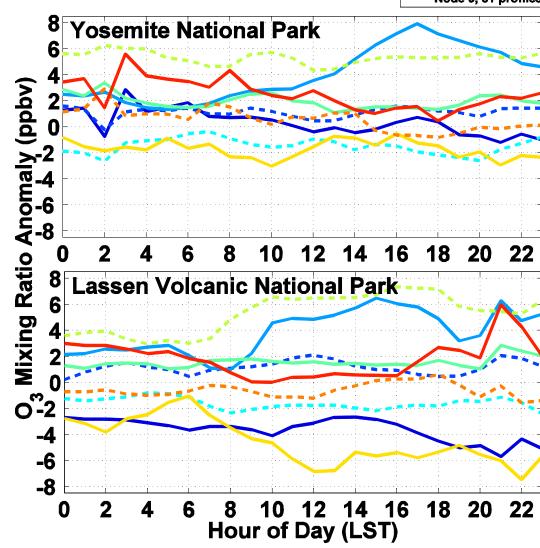
4) SOM links to surface O₃ observations at two long-term elevated sites

Yosemite: 1605 m amsl, 500 km SE of Trinidad Head


Lassen Volcanic: 1756 m amsl, 220 km E of Trinidad Head

Find the relationship between O₃ profile clusters and the surface

Surface O₃ Corresponding to Sonde Clusters


- Black Lines = Average diurnal surface O₃ for days corresponding to SOM cluster (grey lines = all clusters plotted)
- Dots = Trinidad Head cluster average O₃ ± 1σ from profile at corresponding surface site elevation (grey dots = all clusters plotted)
- General agreement between sonde and surface, except clean, summer/fall clusters 1 and 7
- Highest tropospheric O₃ at Trinidad Head = Highest surface O₃ at Lassen Volcanic and Yosemite

Surface O₃ Anomalies by Cluster

Node 1, 80 profiles
Node 2, 154 profiles
Node 3, 83 profiles
Node 4, 175 profiles
Node 5, 113 profiles
Node 6, 80 profiles
Node 7, 45 profiles
Node 8, 129 profiles
Node 9, 81 profiles

- Observed surface O₃ by cluster compared to monthly climatology →
- Clusters 3 and 6: Hourly
 O₃ averages 6 8 ppbv
 higher than climatology
- Clustering Trinidad Head
 O₃ profile identifies
 anomalous events both
 for free tropospheric
 and surface O₃

Consequences for NAAQS/CARB Exceedances – Yosemite

- Sonde/Surface connection established
 - What does it mean for O₃ regulations of MDA8?
- Exceedance rate and number (n) over 18 years, corresponding to Trinidad Head profile clusters
- Lowering of standard to 65 ppbv causes jump in exceedances for clusters 3 and 6
- Yosemite: ~11 → ~15
 exceedances/year if CARB
 AAQS dropped from 70 to 65
 ppbv

Yosemite	>75 ppbv (n) (NAAQS)	>70 ppbv (n) (CARB)	>65 ppbv (n)
Cluster 3	31.3 % (26)	38.6 % (32)	54.2 % (45)
Cluster 6	28.8 % (23)	41.3 % (33)	55.0 % (43)
Cluster 7	13.3 % (6)	20.0 % (9)	37.8 % (17)
Cluster 8	7.8 % (10)	15.5 % (20)	24.0 % (31)
Cluster 9	16.0 % (13)	32.1 % (26)	45.7 % (37)

Consequences for NAAQS/CARB Exceedances – Lassen Volcanic

- Exceedance rate and number (n) over 18 years, corresponding to Trinidad Head profile clusters
- Lowering of standard to 65 ppbv causes jump in exceedances for clusters 3 and 6
- Lassen Volcanic: ~2 → ~4
 exceedances/year if CARB
 AAQS dropped from 70 to
 65 ppbv (recall the 68
 ppbv O₃ design value)

Lassen Volcanic	>75 ppbv (n) (NAAQS)	>70 ppbv (n) (CARB)	>65 ppbv (n)
Cluster 3	4.8 % (4)	12.0 % (10)	24.1 % (20)
Cluster 6	3.8 % (3)	12.5 % (10)	25.0 % (20)
Cluster 7	0 % (0)	0 % (0)	6.7 % (3)
Cluster 8	0 % (0)	1.6 % (2)	5.4 % (7)
Cluster 9	1.2 % (1)	6.2 % (5)	12.3 % (10)

5) Summary

- Trinidad Head, CA O₃ profile clusters correspond to highest surface O₃ measurements at two National Park (high elevation) O₃ monitors
 - Enhanced tropospheric O₃ measured by Trinidad Head sondes has significant affect on surface O₃ at Lassen Volcanic and Yosemite National Parks
- Majority of NAAQS/CARB O₃ exceedances at both surface sites occured with Trinidad Head clusters 3 and 6
 - Surface O₃ hourly maxes 6 8 ppbv above climatological values
- Next Steps: Separation of STE and imported pollution effects on Trinidad Head sondes, surface O₃

Acknowledgments

- Advisor Dr. Anne M. Thompson, PhD Committee Members George
 S. Young, William Brune (Chair), John Harlim
- "Gator" Team: N. Balashov, H. Halliday, S. Miller (at Penn State), D. Kollonige, Z. Fasnacht (at UMD)
- Trinidad Head, CA, station PIs Sam Oltmans and Bryan Johnson (NOAA ESRL GMD)
- NASA Grants to Penn State: DISCOVER-AQ (NNX10AR39G), Applied Sciences Air Quality Team (NNG11AQ44G), SEAC⁴RS (NNX12AF05G)
- Thank you for your attention

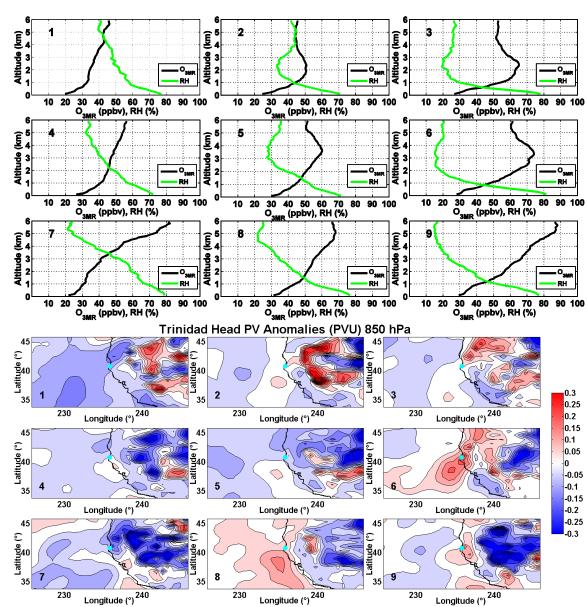
Select References

Cooper, O. R., et al. (2011), Measurement of western U.S. baseline ozone from the surface to the tropopause and assessment of downwind impact regions, J. Geophys. Res., 116, D00V03, doi:10.1029/2011JD016095.

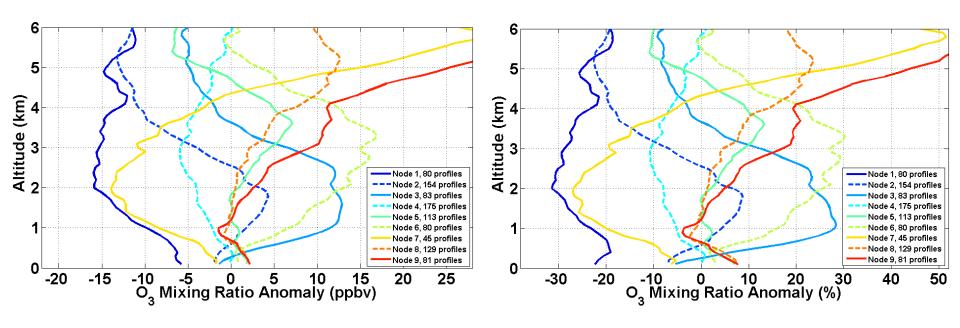
Langford, A. O. et al. (2015), An overview of the 2013 Las Vegas Ozone Study (LVOS): Impact of stratospheric intrusions and long-range transport on surface air quality, *Atmos. Environ.*, 109, 305-233, doi:10.1016/j.atmosenv.2014.08.040

Lin, M.Y., Fiore, A.M., Cooper, O.R., Horowitz, L.W., Langford, A.O., Levy, H., Johnson, B.J., Naik, V., Oltmans, S.J., Senff, C.J. (2012a), Springtime high surfaceozone events over the western United States: quantifying the role of stratospheric intrusions, *J. Geophys. Res.*, 117, doi:10.1029/2012JD018151

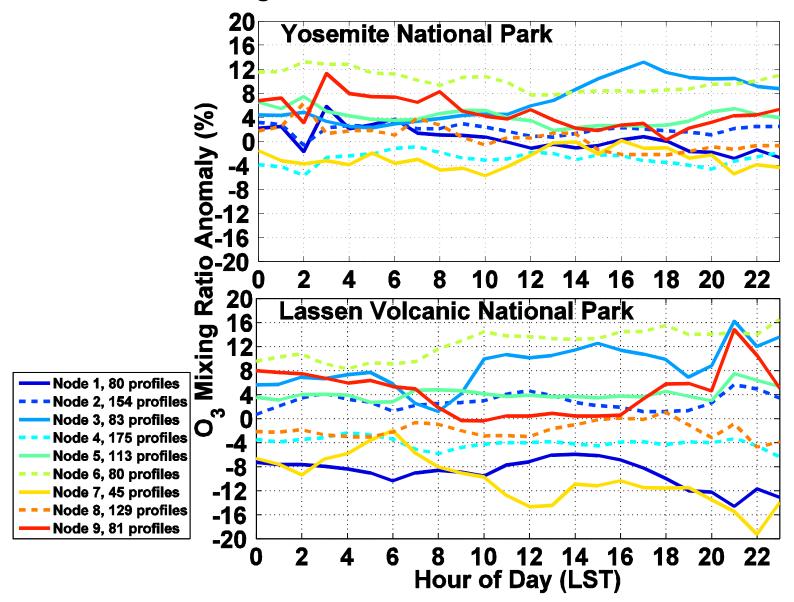
Lin, M.Y., Fiore, A.M., Horowitz, L.W., Cooper, O.R., Naik, V., Holloway, J., Johnson, B.J., Middlebrook, A.M., Oltmans, S.J., Pollack, I.B., Ryerson, T.B., Warner, J.X., Wiedinmyer, C., Wilson, J., Wyman, B. (2012b), Transport of Asian ozone pollution into surface air over the western United States in spring, *J. Geophys. Res.*, 117 doi:10.1029/2011JD016961


Jensen, A. A., A. M. Thompson, and F. J. Schmidlin (2012), Classification of Ascension Island and Natal ozonesondes using self-organizing maps, *J. Geophys. Res.*, 117, D04302, doi:10.1029/2011JD016573.

Stauffer, R. M., A. M. Thompson, and G. S. Young, Free tropospheric ozonesonde profiles at long-term U.S. monitoring sites: 1. A climatology based on self-organizing maps (2015), 2015JD023641, submitted, *J. Geophys. Res.*


Extras

STE Signatures in Clusters 3 and 6


- Clusters 3 and 6
 contain the highest O₃,
 and also lowest RH,
 from 1 4 km
- ERA-Interim reanalysis shows anomalously high PV at 850 hPa for both clusters 3 and 6
- More work to sort STE layers from pollution from Asian continent

How do enhanced O₃ layers compare to climatology?

Surface O₃ % Anomalies by Cluster

